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We consider the behaviour of Schnorr randomness, a randomness notion
weaker than Martin-Löf’s, for left-r.e. reals under Solovay reducibility. Con-
trasting with results on Martin-Löf-randomenss, we show that Schnorr
randomness is not upward closed in the Solovay degrees. Next, some left-r.e.
Schnorr random α is the sum of two left-r.e. reals that are far from random.
We also show that the left-r.e. reals of effective dimension > r , for some
rational r , form a filter in the Solovay degrees.
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1 Introduction

Our central notion is Solovay reducibility ≤S . Informally, for left-r.e. reals α, β ,
α ≤S β expresses that α is no harder to approximate from the left than β . This
implies both α ≤T β , and that β is in a particular sense no less random than
α. Background is provided e.g. in [5, Chapter 9], and also in [11, Section 3.2].

Randomness notions

The algorithmic theory of randomness defines randomness notions of reals
in [0, 1], or equivalently infinite bit sequences, and studies their properties
and interactions with computational complexity. The notion of Martin-Löf
(ML-)randomness was for a long time considered to be the main one. We review
the definition. An open set U ⊆ [0, 1] is r.e. if it is a union of computable
sequence of open intervals with rational endpoints, that is, U =

⋃
i∈N(pi, qi)

where 〈pi〉 and 〈qi〉 are computable sequence of rationals. A ML-test is the
sequence 〈Un〉 of uniformly r.e. open sets with µ(Un) ≤ 2−n where µ is the
Lebesgue measure. A real x is ML-random if x 6∈

⋂
n Un for every ML-test

〈Un〉. A suite of alternative notions has been introduced by modifying this

http://www.ams.org/mathscinet/search/mscdoc.html?code=03D32,68Q30
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definition, both stronger and weaker notions than ML-randomness. See e.g. [11,
Ch. 3]. Many of these notions have shown their importance in particular for the
interaction of randomness and analysis [12, 2].

The following weakening of ML-randomness is important in the present paper.
We say that a real x is Schnorr random if it passes all ML-tests 〈Un〉 such that
µ(Un) is computable uniformly in n.

Main results

For left-r.e. reals, ML-randomness interacts closely with Solovay reducibility:
a left-r.e. real is ML-random iff it is Solovay complete (Calude et al. [3] and
Kučera-Slaman [8]). Also, the complete Solovay degree is join irreducible.

The supremum of two left-r.e. reals in the degree structure induced by Solovay
reducibility is given by their arithmetic sum. We are guided by the following
two facts that restate some of the results above in terms of the sum. Let α, β

be left-r.e. reals.

(1) If α is ML-random, then α+ β is ML-random.
(2) If α+ β is ML-random, then at least one of α and β is ML-random.

A simple direct proof of the first fact can be found in [11, Theorem 3.2.27]. For
the second, see Demuth [4], and as a more recent (and more readable) reference
Downey, Hirschfeldt, and Nies [6].

Our first goal is to show that both statements fail for Schnorr randomness
(Corollary 3.2 and Theorem 4.1). Thereafter, we prove that in contrast, left-
r.e. weakly s-random reals behave similar to ML-random reals (Theorem 5.6).
The reals that have effective packing dimension at most s behave similarly to
non-ML-random reals (Proposition 5.7).

Preliminaries

Our notation in the algorithmic theory of randomness is standard as in Nies
[11] or Downey and Hirschfeldt [5] (except that we write “r.e.” instead of “c.e.”).
Unless otherwise stated, reals in this paper are in [0, 1]. A real α is called left-r.e.
if there exists a computable non-decreasing sequence 〈an〉n∈N of rationals such
that limn an = α. We sometimes identify a real α with its binary expansion
X ∈ 2ω . By X � n we denote the initial segment of X of length n.
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2 Solovay reducibility

2.1 Definitions and basic facts

Definition 2.1 (Solovay [13]) For left-r.e. reals α and β , one says that α is
Solovay reducible to β , denoted by α ≤S β , if there are a constant c and a
partial computable function f : Q → Q such that if q ∈ Q and q < β , then
f (q) ↓< α and α− f (q) < c(β − q).

There is a useful algebraic characterization of Solovay reducibility: α ≤S β

means that β can be obtained from α by literally “adding” information, in the
sense of adding a left-r.e. real γ . To make this work we also need to scale β .
(For the precise version of the result used here see [11, 3.2.29].)

Proposition 2.2 (Downey, Hirschfeldt, and Nies [6]) For left-r.e. reals α, β we
have α ≤S β if and only if there are d ∈ N and a left-r.e. real γ such that
α+ γ = 2dβ .

2.2 Connections to K -reducibility

For any reals α, β one writes

α ≤K β if ∀n K(α � n) ≤+ K(β � n),

where K denotes prefix-free Kolmogorov complexity. In view of the Levin-Schnorr
theorem, this says that β is no less random than α.

For left-r.e. reals α, β , if α ≤S β then α ≤K β [13]. This fact also follows from
Theorem 2.2. We will now obtain an implication in the converse direction under
a hypothesis stronger that α ≤K β . We write α �K β if limn(K(β � n) − K(α �
n)) = ∞.

Proposition 2.3 Let α, β be left-r.e. reals. If α �K β then α <S β .

In the proposition we can replace K(σ) by C(σ), K(σ|n), or C(σ|n) where n = |σ|.
The proof remains almost the same.

Proof First note that β ≤S α would imply β ≤K α, contrary to α �K β . Hence
it suffices to show α ≤S β .
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Let 〈αs〉s∈N, 〈βs〉s∈N be increasing computable sequences of rationals converging
to α, β respectively. Given n ∈ N, let sn be the first stage s such that αs � n =

α � n. There exists a constant c ∈ N such that for each n

K(βsn � n) ≤ K(αsn � n) + c = K(α � n) + c.

Since limn(K(β � n) − K(α � n)) = ∞, we have K(β � n) > K(α � n) + c for
sufficiently large n. Thus, βsn � n 6= β � n for all sufficiently large n. Furthermore,
β � n is not equal to the lexicographic successor of βsn � n, for otherwise K(β � n)
would be within a constant of K(βsn � n). Hence, β − βsn ≥ 2−n .

Define a partial computable function f : Q → Q by f (q) = αs , where s is the
first stage such that q < βs . If n is sufficiently large and sn ≤ s ≤ sn+1 , then

α− αs ≤ α− αsn ≤ 2−n,

while
β − βs ≥ β − βsn+1 ≥ 2−n−1.

Then there is a rational q∗ < β such that α− f (q) ≤ 2(β − q) for every rational
q with q∗ ≤ q < β . Modifying f on the rationals ≤ q∗ shows that α ≤S β .

2.3 Connections to ML-randomness

We restate the two guiding facts from the introduction. They connect Solovay
reducibility and ML-randomness.

Proposition 2.4 Let α, β be left-r.e. reals. If α is ML-random, then α+ β is
ML-random.

For a direct proof see [11, Theorem 3.2.27]. Alternatively, recall that a left-r.e.
real is ML-random iff it is Solovay complete (Calude et al. [3] and Kučera-
Slaman [8]). Prop. 2.4 now follows via Prop. 2.2.

The second fact says that the top degree in the Solovay degrees is join irreducible.

Theorem 2.5 (Demuth [4], Downey, Hirschfeldt, and Nies [6]) Let α, β be
left-r.e. reals. If α+β is ML-random, then at least one of α and β is ML-random.
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3 Schnorr randomness is not upward closed in the Solovay
degrees

The following will be used to show that for Schnorr randomness, the counterpart
of Proposition 2.4 fails.

Theorem 3.1 Let α be a left-r.e. real such that ∀n K(α � n) < n − f (n) for some
order function f . There exists a left-r.e. real β such that α+ β is disjoint from
some infinite computable set.

Proof Suppose g, h are strictly increasing computable functions such that the
range of h is the complement of the range of g. We define γ = α ⊕g β by
γ(g(n)) = β(n) and γ(h(n)) = α(n).

If g is a sufficiently fast growing computable function, then γ = Ω⊕g ∅ satisfies
K(γ � n) ≥+ n − f (n)

2 . Note that γ is left-r.e. Since α �K γ , by Proposition 2.3
we have α ≤S γ . By Prop. 2.2 there exist a natural number d and a left-r.e.
real β such that 2dγ = α+ β . Since γ is disjoint from an infinite computable
set, so is α+ β .

Partial computable randomness is a notion in between Schnorr and ML-randomness.
For the definition see [11, Section 7.4].

Corollary 3.2 The left-r.e. Schnorr random reals are not upward closed in the
Solovay degrees. In fact, there is a partial computably random left-r.e. real
Solovay below a left-r.e. real that is disjoint from an infinite computable set,
and hence not Kurtz random.

Proof By [11, Remark 7.4.17] there exists a left-r.e. partial computably random
real α such that that K(α � n) = O(log n). Now take α+ β ≥S α as above.

4 Left-r.e. Schnorr random reals can be split into non-Schnorr
random reals

We show that the counterpart of Theorem 2.5 for Schnorr randomness does
not hold either. We are given a left-c.e. α with some what slow growing initial
segment complexity, but α can still be Schnorr random using [11, Remark
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7.4.17] as above. We show that α can be written as a sum of left-r.e. reals which
are far from random in various sense. For one sense, the effective Hausdorff
dimension is 0. We recall the definition here. By [9], for a real X ∈ 2ω , the
effective Hausdorff dimension dim(X) can be characterized by

(1) dim(X) = lim inf
n

K(X � n)
n

.

By [1] the effective packing dimension Dim(X) can be characterized by

(2) Dim(X) = lim sup
n

K(X � n)
n

.

Let a be a Solovay degree. For α, β ∈ a we have α ≡K β and hence dim(α) =
dim(β). So we may well-define dim(a) = dim(α) for some real α ∈ a. A survey
of effective Hausdorff dimension is given in [10].

Theorem 4.1 Let α be a left-r.e. real such that C(α � n) ≤ n − g(n) for all n,
where g is a computable function such that

∑
n 2−g(n) is finite and a computable

real. There exist left-r.e. reals β, γ such that α = β + γ , dim(β) = dim(γ) = 0
and both β, γ are not normal and disjoint from infinite computable sets.

Proof Let 〈αs〉 be an increasing computable sequence of dyadic rationals con-
verging to α. We impose additional properties to 〈αs〉. For each k ∈ N, we can
compute s such that Cs(αs � n) < n − g(n) for all n ≤ k . Since αs is a dyadic
rational, αs · 2j is a natural number for some j. By taking a subsequence of such
s and considering an increasing computable function h that maps k to j, we
can assume that αs · 2h(s) is a natural number and C(αs � n) < n − g(n) for all s
and all n ≤ h(s).

Let an be the number of s such that the binary representation of αs+1−αs has a
bit 1 at position n. The numbers {an} are uniformly computably approximable
from below and

α =
∑

n

an · 2−n.

Notice that an ≤ 2n−g(n) for each n. For s such that h(s) < n, αs −αs−1 does not
have a bit 1 at position n. For s such that h(s) ≥ n, we have C(αs � n) < n−g(n)
and there are at most 2n−g(n) many different strings αs � n.

Now we split the natural numbers into intervals I0, I1, . . . such that p(max(In)) >
(min(In))2 for every n where p : N → N is a computable function such that
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∑
m≥n 2−g(m) ≤ 2−p(n) . For these intervals, the following inequalities hold:∑

m>max(In)

am · 2−m ≤
∑

m>max(In)

2−g(m) ≤ 2−p(max(In)) ≤ 2−(min(In))2
.

We define two left-r.e. reals β and γ by

β =
∑

m

{am · 2−m : ∃n(m ∈ I2n)}, γ =
∑

m

{am · 2−m : ∃n(m ∈ I2n+1)}.

For β , the bits at the positions from min(In) to (min(In))2 are 0 whenever n is
odd. This is because, for every n, the terms am · 2−m with m < min(In) affect
only digits with positions below min(Im) and the terms am ·2−m with m > max(In)
only contribute to a number bounded by 2−h(max(In)) which has non-zero digits
only at positions larger than (min(In))2 . By a similar reason, for γ , the bits at
the positions from min(In) to (min(In))2 are 0 whenever n is even.

This fact implies dim(β) = dim(γ) = 0. To compute (min(In))2 bits of β for odd
n, we only need the information of min(In) bits of β and of n. Thus,

K(β � (min(In))2)
(min(In))2 ≤ K(β � min(In)) + K(n) + O(1)

(min(In))2 → 0.

Furthermore, β and γ are not normal, as the limit superior of the frequences
of subwords of the form 0k goes to 1 for each k . Finally, β is disjoint from
the infinite computable set {min(I2n+1) : n ∈ N}, and γ from {min(I2n) : n ∈
N}.

5 Filters and Ideals related to effective dimension

In this final section, we study the relationship between effective Hausdorff
dimension and Solovay degrees. Recall that a nonempty subset F of a partially
ordered set (P,≤) is a filter if

(i) for every x ∈ F , x ≤ y implies y ∈ F ,
(ii) for every x, y ∈ F , there exists z ∈ F such that z ≤ x and z ≤ y.

A filter is called principal if F = {x : x ≥ y} for some y ∈ P.

The ML-random left-r.e. reals are Solovay complete, and therefore induce the
trivial filter consisting of the largest element. To treat filters related to dimension,
we review the following.
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Theorem 5.1 For each rational r ∈ (0, 1), the set of Solovay degrees a such that
dim(a) > r is a filter in the Solovay degrees.

For a proof, we use a generalization of Chaitin’s Omega. Let s ∈ (0, 1]. Tadaki
[14, Theorems 3.1, 3.2] defined

Ωs =
∑

U(σ)↓
2−

|σ|
s

and showed that s = dim(Ωs) = Dim(Ωs). The former equality was independently
shown by Mayordomo [9, Corollary 3.3].

Lemma 5.2 Let r ∈ (0, 1) be a real. Suppose α, β are left-r.e. reals such that
dim(α) > r and dim(β) > r . There is a left-r.e. real γ such that γ ≤S α, γ ≤S β

and dim(γ) > r .

Proof Let p, q be rationals such that r < p < q and q < dim(α), dim(β). Then,
Ωp is a left-r.e. real and dim(Ωp) > r . Furthermore, by Tadaki’s results and
(1,2) we have Ωp �K α, and hence Ωp <S α by Proposition 2.3. Similarly,
Ωp <S β .

Theorem 5.1 is now immediate from the lemma.

Question 5.3 Let r ∈ (0, 1] be a real. If α, β are left-r.e. reals such that
dim(α) ≥ r and dim(β) ≥ r , does there exist γ ≤S α, β with dim(γ) ≥ r?

Equivalent, is {a : dim(a) ≥ r} a filter? By the following it is not a principal
filter.

Proposition 5.4 Let α be a left-r.e. real such that dim(α) = r > 0. There exists
a left-r.e. real β such that dim(β) = r and β <S α.

Proof Let f (n) be the biggest natural number less than n +
√

n. Note that
f : N → N is an increasing computable function. Given a lef-r.e. α, let
β = {f (n) : n ∈ α}. Notice that β is a left-r.e. real with the approximation
βs = {f (n) : n ∈ αs} where αs is an increasing computable approximation of α.

Now the following equalities hold:

r = lim inf
C(α � n)

n
= lim inf

C(β � f (n))
n

= lim inf
C(β � f (n))

f (n)
· f (n)

n
= lim inf

C(β � n)
n

.
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To describe β � f (n) one only needs to describe the bits in the positions f (k) for
k < n. Since f (n + 1) − f (n) ≤ 2 for every n, C(β � n) = C(β � f (k)) + O(1) for
some k .

Clearly β ≤S α. Assume by way of contradiction that the converse also holds.
Then, there are constants c, c′ ∈ N such that

C(α � f (n)) ≤ C(β � f (n)) + c′ ≤ C(α � n) + c.

Let k ∈ N. Then, there exists a0 ∈ N such that f (n) − n ≥ k for all n ≥ a0 .
Inductively, we define an+1 = f (an). Then, an ≥ a0 + kn. In contrast,

C(α � an) ≤ C(α � an−1) + c ≤ C(α � a0) + cn.

Hence,
lim inf

C(α � an)
an

≤ lim inf
C(α � a0) + cn

a0 + kn
≤ c

k
.

Since k is arbitrary, we have dim(α) = 0, which is a contradiction.

Next we consider partial randomness.

Definition 5.5 (Tadaki [14], see also [5, Definition 13.5.1]) A test for weak
s-ML randomness is a sequence of uniformly r.e. sets of strings 〈Vk〉 such that∑

σ∈Vk
2−s|σ| ≤ 2−k . A set X ∈ 2ω is weakly s-ML-random if X 6∈

⋂
kJVkK for all

tests for weak s-ML randomness.

The strings can be replaced with open intervals with dyadic rational endpoints
[5, after Definition 13.5.8].

Tadaki [14] showed that X is weakly s-ML-random if and only if K(X � n) >
sn − O(1). Thus for left-r.e. reals, being weakly s-ML-random is upward closed
under ≤S .

Theorem 5.6 Let s ∈ (0, 1] ∩Q. The set of left-r.e. weakly-s-random Solovay
degrees is a principal filter in Solovay degrees with the degree of Ωs as the
bottom element.

Proof We follow the argument of Kučera-Slaman theorem [8]. Let α be a
left-r.e. weakly s-random real. The goal is to show Ωs ≤S α.

We construct a test for weak s-ML-randomness 〈Uk〉k∈N . At stage t act as
follows. If αt ∈ Uk[t], then do nothing. Otherwise let t′ be the last stage at
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which we put anything into Uk (or t = 0 if there is no such stage), and put the
intervals (αt, αt + 2−

k
s (Ωs

t − Ωs
t′)) into Uk .

Let t0 = 0, t1, · · · be stages we put anything into Uk . Then, the total weight is
bounded by ∑

i

(2−
k
s (Ωs

ti+1
− Ωs

ti))
s ≤

∑
U(σ)↓

(2−
k
s )s(2−

|σ|
s )s ≤ 2−k.

Thus, 〈Uk〉 is a test for weak s-ML-randomness.

Since α is weakly s-random, there exists a constant k such that α 6∈ Uk . Then,

αti+1 − αti > 2−k/s(Ωs
ti − Ωs

ti−1
)

for each i > 0, so Ωs ≤S α.

Now we turn to ideals, the dual notion of filters. A nonempty subset I of a
partially ordered set (P,≤) is an ideal if

(i) for every x ∈ I , y ≤ x implies x ∈ I ,

(ii) for every x, y ∈ I , there exists z ∈ I such that x ≤ z and y ≤ z.

Theorem 2.5 says that the non-ML-random Solovay degrees form an ideal. The
following is an easy observation.

Proposition 5.7 For each r ∈ [0, 1], the set of left-r.e. degrees a such that
Dim(a) < r is an ideal of left-r.e. Solovay degrees. We can replace Dim(a) ≤ r
with Dim(a) < r .

Proof Let α, β be left-r.e. reals such that Dim(α) < r and Dim(β) < r . Then,
γ = α+ β satisfies α ≤S γ and β ≤S γ . One can easily check that K(γ � n) =+

max(K(α � n),K(β � n)) ([7, Theorem 7.4]). Hence,

Dim(γ) = lim sup
K(γ � n)

n
≤ lim sup

max(K(α � n),K(β � n))
n

< r.

The proof of the case of Dim(a) ≤ r is almost the same.

The set of left-r.e. K -trivial degrees is an ideal in the Solovay degrees because
the sum of two K -trivial reals is again K -trivial [7, Theorem 7.2].
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